
Python: modules
Week 4.2

Today’s goals

1. Understand the concept of module.

2. How to import builtin Python modules (e.g. string, random, hashlib, ..).

3. Use csv module to read and write to CSV files.

4. Use secrets module to generate pseudo-random passwords.

5. Use os module to:

○ Generate file paths.

○ Check for specific files.

○ Navigate through a folder system.

6. Perform a simple attack on an operating system.

1-2. Understand the concept of
module and import builtin modules.

What are modules?

Modules are distinct blocks of

components (e.g. code) that can be

used together to build a program.

Imagine a Lego person.

module
(head)

module
(torso)

module
(arm)

module
(leg)

How do we use modules?

1. Use import on module name.
import head

import torso

import arm

import leg

How do we use modules? (cont.)

1. Use import on module name.

2. Call implementation in a module

namespace*.

import head

import torso

import arm
arm.right.move(8)
arm.left.move(-8)

import leg
leg.right.move(-5)
leg.left.move(0)

Multiple module imports?

we can consolidate multiple
import statements from:
import a
import b
import c
import d

into a single import statement:
import a, b, c, d

which is same as:
import (a, b, c, d)

which is also same as having
newlines and/or spaces
between commas:
import (a, b,
 c,
 d)

Specific attribute/function imports from module

let’s say `head` module
contains `hair`, `eye`, etc.
attributes. We can import
everything about `head`:
import head

and then access `hair`
attribute through the
`head` namespace:
head.hair.color = “black”

or, we can directly access
`hair` from `head`:
from head import hair
hair.color = “black”

and even rename our `hair`
namespace to something else:
from head import hair as dog_hair
dog_hair.color = “black”

1. Import at least five different Python modules from The Python Standard
Library in a new file called module_practice.py. The standard library link is
https://docs.python.org/3/library/index.html

Example: import string, random, hashlib

2. ./week4/4.2/02-Stu_ModuleHunter/Unsolved/ModuleHunter.py

Your turn!

https://docs.python.org/3/library/index.html

[Instructor Review]

3. Use csv module to read and
write to CSV files.

● CSV is a format that defines “comma-separated values”.

Imagine a Microsoft Excel file that contains these two rows:

 transform into CSV format

Date,Firstname,Lastname
2018/04/04,Herbert”,”,Shin

csv module review

Date Firstname Lastname

2018/04/04 Herbert, Shin

csv module demo

import `csv` module
import csv

open ‘WWE-data.csv’ file and
store its’ buffer into variable
csv_file = open(‘./WWE-data.csv’)

parse the buffer into a line reader
and store the iterator into variable
contents = csv.reader(csv_file)

print each lines
for line in contents:
 print(line)

`WWE-data.csv` for terminal demo:

Wrestler,wins,losses,draws

Dean Ambrose,133,67,4

Kevin Owens,61,130,2

1. Rewrite the previous script (below) so that, instead of printing out information to

the screen, it instead writes the lines directly to a new text file called

PeoplesToKeepEyesOn.txt.

 import csv
 csv_file = open(‘./WWE-data.csv’)
 contents = csv.reader(csv_file)
 for line in contents:
 print(line) # <-- hint

Hint: We used .read() before to read an opened file. Is there such thing as

.write()? Incidentally, we used csv.reader. Is there a such thing as a “writer”?

Your turn!

[Instructor Review]

4. Use secrets module generate
pseudo-random passwords.

What is secrets module?

From Python docs:

The secrets module is used for generating cryptographically strong* random

numbers* suitable for managing data such as passwords, account

authentication, security tokens, and related secrets.

Note: cryptographically strong means “highly resistant to cryptanalysis”.

secrets module demo

Example #1: generate a pseudo-random
number below N.

import `secrets` module
import secrets

print a random number below N=100
print(secrets.rand_below(100)) # 53

print a random number below N=500
print(secrets.rand_below(500)) # 237

Example #2: choose a random element
from a list.

import `secrets` module
import secrets

create a list containing each
characters of string ‘apple’.
apple -> [‘a’, ‘p’, ‘p’, ‘l’, ‘e’]
apple = list(‘apple’)

choose a random element from `apple`
print(secrets.choice(apple)) # ‘a’

1. Using secrets module, generate a list of 100 random password strings and

write each results into a file called PasswordsList.txt.

Hint: using what we already know about secrets.randbelow(), secrets.choice(),

for loop, and writing strings into a file, can we generate multiple strings composed

of random characters/symbols/numbers?

Extra: can we do even better job by setting a minimum password length

requirement of each generated passwords?

Your turn!

[Instructor Review]

5. os module

What is os module?

From Python docs:

This module provides a portable way of using operating system dependent

functionality.

For example, os.path.join() method allows OS-independent interface to

concatenate directory paths:

- UNIX: /root/folder_1/folder_2/

- Windows: C:\folder_1\folder_2\

1. Write a program that prompts the user for a file name (e.g. Dracula.txt) and

then searches the Books directory for it.

a. If the file exists, then print the file content to the terminal.

b. Otherwise, print the string “Sorry! That book is not in our records! Please try

again!”

Hint #1: you must first unzip Books.zip file before implementing the program.

Extra: since it’s possible that users forget to put file extensions, can we do better by

checking for file extensions (like “.txt”) and concatenating to the user input?

Your turn!

[Instructor Review]

5. Perform a simple attack on an
operating system.

os.walk

From Python docs:

Generate the file names in a directory tree by

walking the tree either top-down or bottom up.

os.walk demo

import `secrets` module
import os

store file path ‘Resources/DiaryEntries’ into variable
folder_path = os.path.join(‘Resources’, ‘DiaryEntries’)

traverse the ‘Resources/DiaryEntries’ directory
for root, dirs, files in os.walk(folder_path):
 print(‘Currently inside of ‘ + root) # tree root node
 print(‘Contains directories: ‘ + str(dirs)) # directory node(s)
 print(‘Contains files: ‘ + str(files)) # file node(s)

You will be taking on the role of a hacker. Your task is to completely overwrite the

victim’s files with the phrase “GET WREKT!”.

1. Write an application that will check the Diaries directory and automatically

navigate through its’ subdirectories/files.

2. If the application finds a file, replace the file content with the phrase “GET

WRECKT!”.

Hint #1: you must first unzip Diaries.zip file before implementing the program.

Hint #2: os.walk through the Diaries directory.

Your turn!

